Particle tracking in a simulated melt pool of laser powder bed fusion

نویسندگان

چکیده

Laser powder bed fusion (LPBF) is an additive manufacturing technique that prints objects layer-by-layer by selectively melting powders using a focused laser. The mechanical properties of LPBF parts are affected processing parameters influence the flow within melt pool. Marangoni convection surface tension dependent mass transfer process from region lower to higher tension, influenced temperature and presence surface-active elements. convection-induced pattern in molten metal pool can induce different characteristics defects. Tracking oxide particles be potential mechanism for assessing fabricated parts. Therefore, this work, particle tracking algorithm was developed track produced LPBF. patterns were observed high-speed camera. Binary images simulated MATLAB script based on experimental observations. used patterns: radially outward, inward, rotational. Various factors affecting accuracy identified, such as size, image pixel size number oxides, pattern, velocity. velocity found have maximum accuracy. probability error has been quantified, causes errors explored.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of the Melt Pool Length during Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process

Contact author: [email protected] Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessari...

متن کامل

Development of a Melt Pool Tracking Vision System for Laser Deposition

This paper chronicles the development of a vision system for tracking melt pool morphology in the laser metal deposition process. This development is to augment an existing temperature feedback control system. Monitoring both the temperature and shape of the melt pool is necessary because of the effects of local geometry on the cooling rate at the melt pool. Temperature feedback alone cannot ac...

متن کامل

Hydrodynamics of a Gas-Solid Fluidized Bed at Elevated Temperatures Using the Radioactive Particle Tracking Technique

Effect of temperature on hydrodynamics of bubbling gas-solid fluidized beds was investigated.  Experiments were carried out in the range of 25-600 ºC and different superficial gas velocities in the range of 0.17-0.78 m/s with sand particles. Time-position trajectory of particles was obtained by radioactive particle tracking technique. These data were used for determination of mean velocitie...

متن کامل

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modificatio...

متن کامل

Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Laser Applications

سال: 2023

ISSN: ['1042-346X', '1938-1387']

DOI: https://doi.org/10.2351/7.0001198